

A111

Passenger Flow Analysis From MPD to Transport and Commuting Statistics

Addes 9181 1116 152-0

Reinhard Schwarzenegger & Michael Cik online | 11.04.2024

Daily 3,2 Mio devices within the A1 Network with 7000+ base stations

Turning data into Insights

With Invenium Mobility Insights, we answer a wide variety of questions from our customers in business, tourism, transport and many more. Join us in exploring human mobility and gain valuable insights into the behaviour of your customers.

In compliance with the strictest data protection guidelines

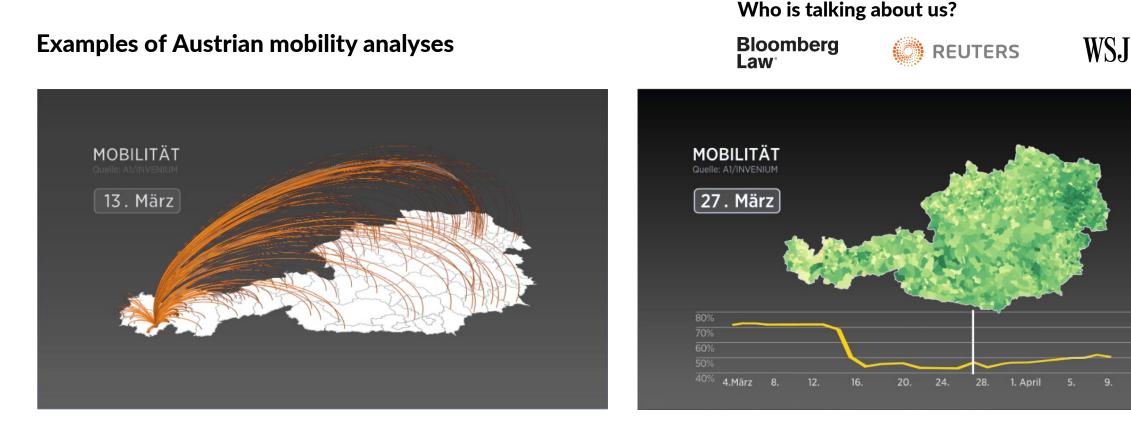
Collect data

We collect completely anonymized data generated during the communication of mobile devices with cell towers.

Analyze Data

We rely on modern statistical methods and state-of-the-art machine learning approaches to turn millions of data points into insights.

Visualize data


Get an overview of analysis results with our daily PDF reports or go deeper with our interactive dashboards. We have the right solution for every requirement.

Answer questions

Human movement influences everything. We help you find answers to your questions and thus transform the way you make decisions.

Providing governments with lockdown analysis

Departure of tourists from Ischgl on the day of the lockdown start

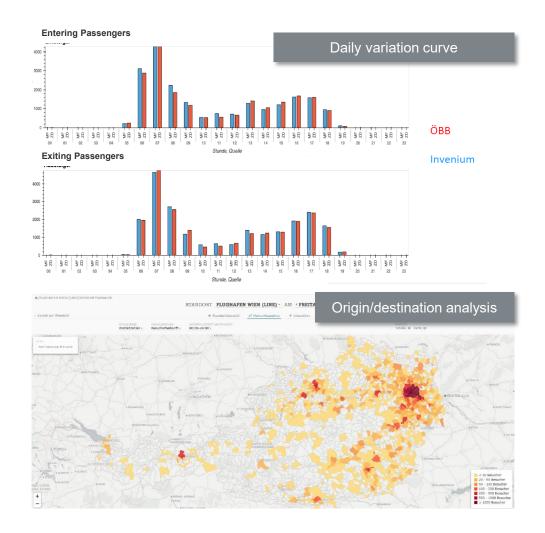
Mobility change for each municipality during the lockdown

Passenger Flow Analysis: Project What are the objectives and partners?

Cooperation Project

- Project **Passenger Flow Analysis** with the **goal**:
 - analyzing passenger demand using anonymous Floating Phone Data for 6 different use cases
 - provide the basis for internal planning purposes
 - develop internal analytic tools
- Telco provider A1 Telekom Austria provides anonymized floating phone data (market share in Austria Q1/2023 ~ 38%)
- Invenium creates, maintains and enhances the algorithm platform
- ÖBB Infrastruktur provides the actual train timetable on a daily basis using the Advanced Railway Automation Management Information System (ARAMIS)

ΰВВ

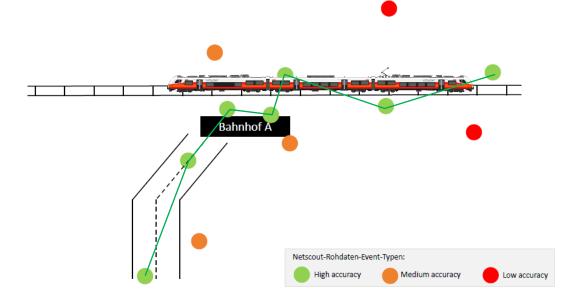

INFRA

Passenger Flow Analysis: Project What are the different use cases?

Use Cases

- Entering and exiting passengers per station
- Station based **Origin-Destination-Matrix** (including transfer passengers)
- Loads of passengers on defined cross sections
- Analysis of delays
- Origin-Destination-Matrix in zonal structure of the National Austrian Transport Demand Model (VMÖ)
- Catchment areas of stations (based on Home-Activity)
- Special analysis, e.g. demand peaks

Passenger Flow Analysis: Functionality How is the data determined?



Method

- Anonymous mobile network events are used to create trajectories over the day
- A **probabilistic model** is built based on **Machine Learning Algorithms** incl. trajectories combined with the track coordinates and the ÖBB train timetable
- Using this underlying principle, several algorithms are used to estimate the total (passenger) demand
- This procedure complies with all data privacy regulations and has the appropriate certification

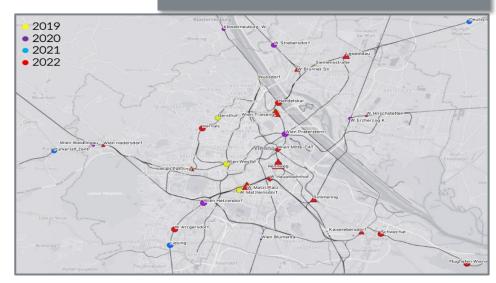
Processing of Data

- A1 provides the anonymized raw Floating phone data including sociodemographic data. Each of the 3.2 million A1 clients generates (on average) 1000 mobile phone events per day
- **Invenium** extrapolates the A1 data to calculate the total transport demand. Quality control measures accompany the process
- ÖBB verifies, manages, uses and provides the results

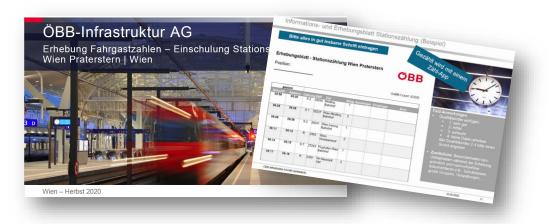
Process (from raw data to results)

A1		User	Invenium	ÖBB
Anonymized floating phone data from A1	Monitoring- system incl. triangulation	Use-Activity on End-User device	Algorithms to calculate Entering / Exiting passengers (per train)	Calculated results

Passenger Flow Analysis: Quality How do we validate? (1)



Empirical Reference Data

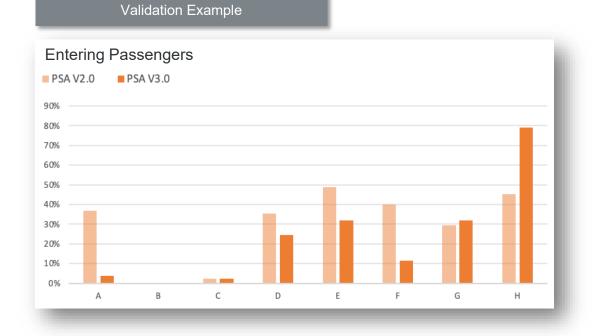

- Manually performed counts to validate the model
- Establishment of high-quality assured empirical passenger counts. Design, organization, implementation, and validation by the ÖBB
- 142 stations of different size categories, locations, features etc... were manually validated since 2019, also counts in trains
- ÖBB-Werbung supported with supplying the counting staff

Counting Method and Validation

- Counting of entering and exiting passengers per train
- The counting **staff** was **specifically trained** to ensure **reliable** and **consistent counts**
- For each count, one person was tasked with managing the counting team. **Only high-confidence counts** were **used** to validate the model

Stations with manual validation counts in Vienna

Passenger Flow Analysis: Quality How do we validate? (2)



Status of Quality

- Since 2019, the quality of the algorithm was continuously improved (from version 1 to version 6):
 - New Monitoring-System at A1 Telekom Austria
 - Individual parameters for urban areas
 - **Improved accuracy** in **rural areas** with low cellular network coverage
 - Focus on the "Vienna Main-Line" and border sections
 - Optimization of **parameters** for **long-distance trains**
 - Optimization of the detection of passenger stops at Vienna stations and the extrapolation of passenger numbers (socio-demographic characteristics)
 - Slightly higher variance still exists on smaller and less used train stations

Outlook

- Improvement in the raw-data quality from the monitoring system from the A1 cellular network
- Automated validation of the actual train schedule (ARAMIS)
- Optimization of the algorithm in version 6 (current roll-out)
- 5G expansion will further improve the quality in the future

Passenger Flow Analysis: Status 2024 How is the progress?

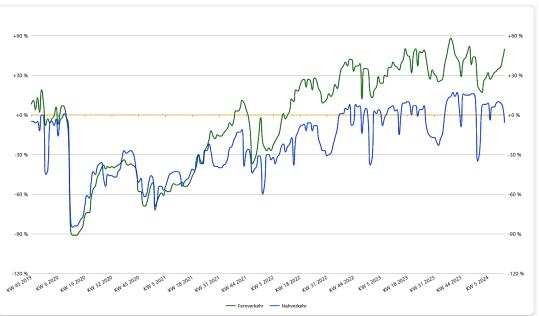
Strengths

- Passenger demand is continually calculated for the entire Austrian railway network using a consistent method
- Comprises entire journey (from origin to destination)
- The results are available for **different time aggregations** (weekends, events, yearly variation curve, etc.)
- Distinction of train categories
- Pandemic-proof method, fully automated
- High quality results for medium and high categorized stations

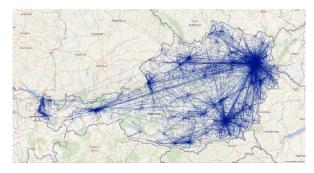
Weaknesses

- Quality improvements dependent on cellular network expansions
- Difficulty in differentiating parallel traffic flows (affects some stations with nearby roads)
- Validation counts still necessary for future algorithm improvement
- Low quality results for low categorized stations (especially less than 200 passengers per day)

ÖBB-Infrastruktur AG/AM SP Project Passenger Flow Analysis | 11.04.2024



Passenger Flow Analysis: Status 2024 How is the data used?

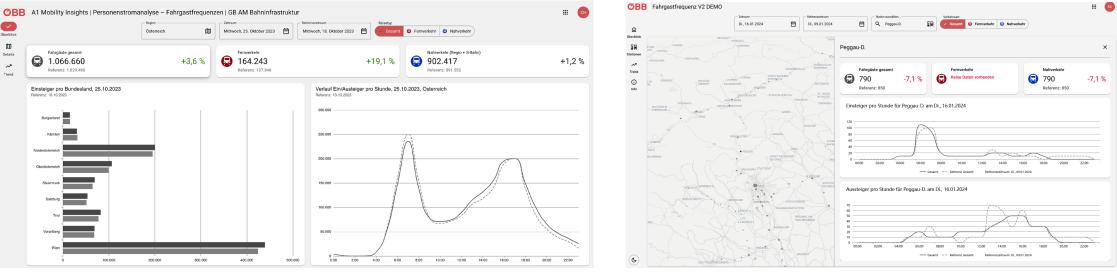


Practical Applications

- Statistics of passenger numbers throughout the pandemic necessary information for the **ÖBB Management** and CEO
- The line Vienna Salzburg, which normally operates without public funding, urgently needed public funding to ensure continued operation during the pandemic. The project provided the necessary data for this political decision
- Aggregated data (for an average workday) are used as a basis for internal planning purposes
- Special analyses (P&R, Tauern-tunnel closure, route closures, new stations, ...)
- Individualized reports are supplied to other ÖBB-departments
- Data is used as an input factor for the National Austrian
 Transport Demand Model (Verkehrsmodell Österreich VMÖ)
- Pilot project to supply digital passenger data to rail operating companies
- **Pilot project** for the data exchange of digital passenger data with **automatic passenger counting data** for validation

Jahr	Station - Code	Station - Bezeichnung	Einsteiger	Aussteiger	Umsteiger	Gesamt	Qualitätsindex
2019	ABF	Abfaltersbach West	21,5	38	0	59,5	1
2019	ABFK1	Mittewald a.d.Drau	13.4	15.2	0	28,6	1
2019	ABZ	Maxing	3,8	0,2	0	4	1
2019	ACH	Achau	51,2	56,3	0,3	107,8	1
2019	AD	Admont	0,6	0,6	0	1,2	1
2019	AF	Andorf	164,7	180,1	0,3	345.2	1
2019	AG	Angem	160,4	143,9	0,1	304,5	1
2019	AG H1	Stillfried	49,3	39,8	0,2	89,4	1
2019	AH	Absdorf-Hippersdorf (in Ah)	368	449,5	103	920,6	1
2019	AI	Aigen-Schlägl	31,8	28,7	8,4	69	1
2019	AJ	Salzburg Aigen	415,2	330,1	3,8	749,4	1
2019	AJ H1	Salzburg Süd	416,1	393,2	9,7	819,9	1
2019	AJ H2	Elsbethen	182,6	181,7	5,3	369,9	1
2019	AJ H3A	Puch Urstein	201,9	158,4	3	363,5	1
2019	AJ H4	Puch bei Hallein	136,5	134,9	2,2	273,7	1
2019	AJ H5	Oberalm	170,7	140,4	1,2	312,3	1
2019	AK	Aurachkirchen	29	40,8	0	69,8	1
2019	AK H1	Wankham	28,6	38,8	0	67,4	1
2019	ALL	Allentsteig	14,2	22,9	0	37,1	1
2019	AMS	Amstetten (in Ams)	1 792	1 924,4	316,1	4 032,9	1
2019	AMSH1	Mauer-Öhling	49,5	52,7	0,4	102,6	1
2019	AMSH1U	Greinsfurth	20,9	22,1	0,4	43,7	1
2019	AMSH2	Aschbach Haltestelle	52.3	37.7	0.4	90.5	1

Passengers weekly average (Mo-Fr) 1.1.20 -1.4.24, deviation from baseline (22.2.-11.3.20)


ÖBB-Infrastruktur AG/AM SP Project Passenger Flow Analysis | 11.04.2024

Passenger Flow Analysis: Status 2024 New Dashboard



Overview

Stations

Trend

