

Food and Agriculture Organization of the United Nations

UNBig Data Regional Hub for Africa

EO-STAT CROP MAPPER FOR CROP TYPE MAPPING IN SENEGAL

Presenter: Vivian Ondieki EO data scientist OCS,FAO

Project Overview

- Big data ERA , improved computation capacity,rise of ML
 Challenges:
 - Low availability of quality insitu data
 - Need for expertise for RS & Big data handling
- Main Objective is to support countries' capacity to consistently collect agricultural statistics through integrated earth observation data, physical modeling, and ground truth data collection
- Development and testing of data frugal algorithms (e.g. Dynamic Time Warping, transfer learning)

Impact:

 Support accurate reporting and decision-making for enhancing food security monitoring and natural resources management

Importance of crop type mapping

Dry Soil Condition

Reason for Action

Training Goal:

Understand the EO-STAT crop mapper methodology

□Enable the participants to be acquainted with EO-STAT crop mapping tool (no coding required).

□ Set up study area,

Define crop calendars

Load insitu samples and perform QA/QC

□Run supervised classifier

User-friendly exploration of crop type data through Google Earth Engine tools.

EO-STAT CROP MAPPER METHODOLOGY

Supervised classification

Step 1 : Define AOI and load insitu data

UNBig Data Regional Hub for Africa

Define area of interest

Loading the insitu data

- Crop data •
 - Formatting:
 - attribute types
 - attribute names
 - Four attributes must be indicated:
 - Crop name
 - Crop ID
 - Year
 - Period

Attribute	Column Name	Туре	Description	Remark
Crop Name	Class1	String	Crop type class attribute	The crop names are case sensitive. E.g., do not use "Wheat" and "wheat" for the same crop type.
Crop ID	ClassNo1	Number	Crop type ID attribute	Unique ID associated to every Crop Name. Only numbers between 1 and 50 are permitted.
Year	Year	Number	Year of observation	
Period	Season	String	Validity period of observation	Use one of the following: • "rainy_season" • "day_season"

"ary season"/

"rainy season&dry season"

Step 2: QA/QC of insitu points

Step 3: Satellite image preparation

Select crop seasons

The crop-specific temporal metrics related to the crop phenology will be extracted

Rainy season - lies between June to November

Seasons used include:

Dry season - January to May

 \bigcirc

 \bigcirc

Senegal crop calendar (source: FAO)

Average monthly rainfall (1991-2020) (source Worldbank)

Sensors

The following sensors are used in EO-stat Senegal tool

- Sentinel-1 and Sentinel-2
- Sentinel-2

Sentinel 1

Type : Radar

- Temporal resolution: one image every 6 days
- □ Spatial resolution: 10m
- Used bands: VV, VH

- Sentinel 2
- Type: Optical
- Temporal resolution: one image every 5 days
- □ Spatial resolution : 10m
- Used bands : Green, Blue, SWIR1,SWIR2,NDVI

Atmospheric pertubations

Satellite image processing

Step 4: Crop map generation

UNBig Data Regional Hub for Africa

Crop type classification algorithms

Three methods of classification are available

- > Time-constrained Dynamic Time Warping (Maus, Camara, et al., 2016, Desimone Lorenzo et al., 2022).
- > Random Forest supervised classification (Gorelick et al., 2017).

Step 5: Accuracy assessment & Visualization of results

Accuracy Assessment

The tool provides four types of accuracy metrics:

- Overall accuracy
- Cohen's kappa index
- Producer's accuracy per class
- Users' accuracy per class

Value of Kappa	Level of Agreement	% of Data that are Reliable
0–.20	None	0–4%
.21–.39	Minimal	4–15%
.40–.59	Weak	15–35%
.60–.79	Moderate	35–63%
.80–.90	Strong	64-81%
Above.90	Almost Perfect	82-100%

	=	$\mathrm{TP}+\mathrm{TN}$					
		$\overline{\mathrm{TP}}$	+	TN	+	\mathbf{FP}	+

Confusion matrix

		Predicted condition			
	Total population = P + N	Positive (PP)	Negative (PN)		
Actual condition	Positive (P)	True positive (TP)	False negative (FN)		
	Negative (N)	False positive (FP)	True negative (TN)		

EO-STAT CROP MAPPER COMPONENTS

Eo-stat crop mapper components

Adminstrator tool

End user Tool

https://ocsgeospatial.users.earthengine.app/view/eostat-senegal

UNBig Data Regional Hub for Africa

App architecture

Scan me!

ANY QUESTIONS?

https://www.fao.org/in-action/eostat

<u>tps://ecastats.uneca.org/regionalhub/</u>

