TIVA: CONSTRUCTING THE ICIO TABLE AND FUTURE WORK

Fabienne Fortanier (Head of Trade Statistics, OECD)
Christophe Degain (Senior Statistician, WTO)
Overview of the presentation

• Recap: last session
 – What is TiVA
 – How are SUTs useful for constructing TiVA
 – What analytical and policy questions can be answered using TiVA

• This session:
 – How is TiVA constructed – and what parts of SUTs are particularly relevant
 – Future developments: extended SUTs
ICIO TABLE CONTENT AND CONSTRUCTION
Methodology: building an ICIO

• The inter-country input output table (ICIO) forms the core system from which the TiVA indicators (and many others) can be derived

• Constructed by combining:
 – National Supply-Use / Input-Output tables (preferably with split in domestic and imported use)
 – National accounts statistics
 • Main aggregates (GDP, final demand components, trade)
 • Value added and output by industry
 – Bilateral trade, by industry and end-use category
A national IO table

Domestic intermediate consumption
What amount of products provided domestically by sector 2 is consumed by sectors 1, 2 and 3 within country A (for intermediate use).

Imported intermediate consumption
What amount of products provided from abroad (by another economy) by sector 2 is consumed by sectors 1, 2 and 3 within country A (for intermediate use).

Final demand by category
 Specifies by industry (row), how products are directly consumed by end users (e.g. households, governments, GFCF, exports) / imports in FD.

Value added and output
 Specifies by industry (column), shows value added (and its main components) and intermediate consumptions add up to total output.
Schematic outline of the ICIO

Industry AND country dimension:
How much of what is produced by Sector 2 in country C is consumed by sectors 1, 2, and 3 in countries A, B, and C (for intermediate use)

Value added and output (NA consistent):
Specifies by industry (column!) how e.g. the use of intermediates, and the produced value added (and its main components), add up to total output

Final demand by category and country:
Specifies by industry (row!) how produced value is directly consumed by end users (e.g. households, governments, GFCF. Excl Exports)
Where do we find the national data?

<table>
<thead>
<tr>
<th>Country A</th>
<th>Country B</th>
<th>Country C</th>
<th>Final Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sector 1</td>
<td>Sector 2</td>
<td>Sector 3</td>
<td>Country A</td>
</tr>
<tr>
<td>Sector 2</td>
<td>Sector 3</td>
<td></td>
<td>Country B</td>
</tr>
<tr>
<td>Sector 3</td>
<td></td>
<td></td>
<td>Country C</td>
</tr>
</tbody>
</table>

Directly taken from the national IO or SUT table:
1. Intermediate domestic use; 2. Value added, output per ind.; 3. Final demand (EXCL exports)

More effort required:
4. Exports, by partner country (B and C) and INTERMEDIATE end use -> total export by industry (rows) taken from the national IO/SUT table, breakdown by importing industry and use category from partner country imports
5. Exports, by partner country (B and C), and FINAL end use -> ibid. 4.
6. Imports for intermediate use, by partner country and importing industry -> total imports by industry (columns) taken from the National IO/SUT table, broken down by partner
7. Imports for final use, by partner country and exporting industry -> ibid. 6
The production of an ICIO involves overcoming HUGE data challenges

- **Sheer amount of required data** (national SUT / IO tables (pref. with imported use); national accounts main aggregates; value added and output by industry; Bilateral trade (goods and services, by industry and end-use)
- **Availability** (of all required sources, but notably IOs, SUTs and import flow matrices)
- **Completeness** (no missing values are allowed in the ICIO system for it to work properly)
- **Timeliness** (e.g., national IOs and SUTs are often published only 2-3 years after the reference period)
- Level of **detail** in breakdown (e.g. by industry, country or product, depending on the respective data source) is not always sufficient
- **Harmonization** of different national classifications (of e.g. industries, products)
- **Consistency** across all national sources (SUT with NA with Trade)
- **Symmetry** of trade statistics (reporter vs mirror statistics)
National data inconsistencies example 1: SNA vs SUT
The UK and Greece, NC mil, 2005

<table>
<thead>
<tr>
<th></th>
<th>United Kingdom</th>
<th>Greece</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SNA (1)</td>
<td>SUT (2)</td>
</tr>
<tr>
<td>Final consumption expenditure (FCE)</td>
<td>1,084,211</td>
<td>169,662</td>
</tr>
<tr>
<td>Household FCE*</td>
<td>815,938</td>
<td>814,664</td>
</tr>
<tr>
<td>General government FCE</td>
<td>268,273</td>
<td>268,088</td>
</tr>
<tr>
<td>Gross capital formation</td>
<td>213,938</td>
<td>41,322</td>
</tr>
<tr>
<td>Gross fixed capital formation**</td>
<td>209,689</td>
<td>209,381</td>
</tr>
<tr>
<td>Changes in inventories</td>
<td>4,249</td>
<td>4,472</td>
</tr>
<tr>
<td>Exports of goods and services</td>
<td>340,424</td>
<td>330,794</td>
</tr>
<tr>
<td>Exports of goods</td>
<td>217,476</td>
<td>213,536</td>
</tr>
<tr>
<td>Exports of services</td>
<td>122,948</td>
<td>117,258</td>
</tr>
<tr>
<td>Imports of goods and services</td>
<td>375,862</td>
<td>373,641</td>
</tr>
<tr>
<td>Imports of goods</td>
<td>281,850</td>
<td>293,862</td>
</tr>
<tr>
<td>Imports of services</td>
<td>94,012</td>
<td>79,779</td>
</tr>
<tr>
<td>Gross Domestic Product (GDP)</td>
<td>1,262,710</td>
<td>193,050</td>
</tr>
<tr>
<td>Total Value Added***</td>
<td>1,125,300</td>
<td>1,116,664</td>
</tr>
<tr>
<td>Agriculture, hunting, forestry, fishing (A-B)</td>
<td>7,035</td>
<td>7,530</td>
</tr>
<tr>
<td>Mining, Manufacturing, Utilities (C-E)</td>
<td>184,756</td>
<td>192,249</td>
</tr>
<tr>
<td>Manufacturing (D)</td>
<td>133,390</td>
<td>148,111</td>
</tr>
<tr>
<td>Construction (F)</td>
<td>82,112</td>
<td>69,868</td>
</tr>
<tr>
<td>Wholesale, retail, restaurants and hotels (G-H)</td>
<td>193,664</td>
<td>162,712</td>
</tr>
<tr>
<td>Transport, storage and communication (I)</td>
<td>95,232</td>
<td>80,889</td>
</tr>
<tr>
<td>Other Activities (J-P)</td>
<td>562,501</td>
<td>603,400</td>
</tr>
</tbody>
</table>

Sources: SNA data are from UN; SUT are from Eurostat. Final consumption expenditure and Gross capital formation are in purchasers' price. Exports of goods and services include re-exports. *Household FCE includes non-profit institutions service households and **Gross fixed capital formation includes acquisitions less disposals of valuables. *** Letters in parenthesis refer to ISIC Rev.3 industry classifications

9
National data inconsistencies example 2: Merchandise trade and SUTs

The UK and Greece, NC mil 2005

<table>
<thead>
<tr>
<th>CPA</th>
<th>Merchandise Trade (MT)</th>
<th>SUT</th>
<th>Ratio (MT/SUT)</th>
<th>Merchandise Trade (MT)</th>
<th>SUT</th>
<th>Ratio (MT/SUT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>1,422</td>
<td>1,270</td>
<td>1.120</td>
<td>1,219</td>
<td>1,380</td>
<td>0.883</td>
</tr>
<tr>
<td>02</td>
<td>52</td>
<td>52</td>
<td>1.000</td>
<td>6</td>
<td>8</td>
<td>0.750</td>
</tr>
<tr>
<td>05</td>
<td>369</td>
<td>400</td>
<td>0.923</td>
<td>293</td>
<td>346</td>
<td>0.847</td>
</tr>
<tr>
<td>10</td>
<td>52</td>
<td>44</td>
<td>1.182</td>
<td>5</td>
<td>8</td>
<td>0.625</td>
</tr>
<tr>
<td>11</td>
<td>12,015</td>
<td>11,830</td>
<td>1.016</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>17</td>
<td>-</td>
<td></td>
<td>32</td>
<td>32</td>
<td>1.000</td>
</tr>
<tr>
<td>14</td>
<td>7,156</td>
<td>5,088</td>
<td>1.406</td>
<td>116</td>
<td>117</td>
<td>0.991</td>
</tr>
<tr>
<td>15</td>
<td>9,325</td>
<td>10,234</td>
<td>0.911</td>
<td>1,841</td>
<td>2,040</td>
<td>0.902</td>
</tr>
<tr>
<td>16</td>
<td>647</td>
<td>684</td>
<td>0.946</td>
<td>142</td>
<td>142</td>
<td>1.000</td>
</tr>
<tr>
<td>17</td>
<td>2,867</td>
<td>3,183</td>
<td>0.901</td>
<td>624</td>
<td>651</td>
<td>0.959</td>
</tr>
<tr>
<td>18</td>
<td>2,306</td>
<td>3,843</td>
<td>0.600</td>
<td>1,276</td>
<td>1,744</td>
<td>0.732</td>
</tr>
<tr>
<td>19</td>
<td>897</td>
<td>1,441</td>
<td>0.622</td>
<td>59</td>
<td>65</td>
<td>0.908</td>
</tr>
<tr>
<td>20</td>
<td>338</td>
<td>354</td>
<td>0.955</td>
<td>66</td>
<td>67</td>
<td>0.985</td>
</tr>
<tr>
<td>21</td>
<td>2,206</td>
<td>2,425</td>
<td>0.910</td>
<td>112</td>
<td>129</td>
<td>0.868</td>
</tr>
<tr>
<td>22</td>
<td>4,220</td>
<td>3,379</td>
<td>1.249</td>
<td>128</td>
<td>101</td>
<td>1.267</td>
</tr>
<tr>
<td>23</td>
<td>8,718</td>
<td>10,463</td>
<td>0.833</td>
<td>1,345</td>
<td>2,363</td>
<td>0.569</td>
</tr>
<tr>
<td>24</td>
<td>35,023</td>
<td>33,574</td>
<td>1.043</td>
<td>1,972</td>
<td>2,036</td>
<td>0.969</td>
</tr>
<tr>
<td>25</td>
<td>5,578</td>
<td>5,029</td>
<td>1.109</td>
<td>460</td>
<td>465</td>
<td>0.989</td>
</tr>
<tr>
<td>26</td>
<td>2,071</td>
<td>1,983</td>
<td>1.044</td>
<td>357</td>
<td>374</td>
<td>0.955</td>
</tr>
<tr>
<td>27</td>
<td>9,749</td>
<td>10,936</td>
<td>0.891</td>
<td>1,440</td>
<td>1,661</td>
<td>0.867</td>
</tr>
<tr>
<td>28</td>
<td>4,277</td>
<td>4,202</td>
<td>1.018</td>
<td>382</td>
<td>378</td>
<td>1.011</td>
</tr>
<tr>
<td>29</td>
<td>19,546</td>
<td>18,630</td>
<td>1.049</td>
<td>569</td>
<td>575</td>
<td>0.990</td>
</tr>
<tr>
<td>30</td>
<td>10,091</td>
<td>9,808</td>
<td>1.029</td>
<td>60</td>
<td>19</td>
<td>3.158</td>
</tr>
<tr>
<td>31</td>
<td>6,982</td>
<td>6,739</td>
<td>1.036</td>
<td>391</td>
<td>454</td>
<td>0.861</td>
</tr>
<tr>
<td>32</td>
<td>11,814</td>
<td>19,010</td>
<td>0.621</td>
<td>252</td>
<td>306</td>
<td>0.824</td>
</tr>
<tr>
<td>33</td>
<td>8,223</td>
<td>8,537</td>
<td>0.963</td>
<td>129</td>
<td>138</td>
<td>0.935</td>
</tr>
<tr>
<td>34</td>
<td>23,539</td>
<td>21,736</td>
<td>1.083</td>
<td>199</td>
<td>211</td>
<td>0.943</td>
</tr>
<tr>
<td>35</td>
<td>13,380</td>
<td>13,773</td>
<td>0.971</td>
<td>336</td>
<td>361</td>
<td>0.931</td>
</tr>
<tr>
<td>36</td>
<td>4,536</td>
<td>4,717</td>
<td>0.962</td>
<td>140</td>
<td>154</td>
<td>0.909</td>
</tr>
<tr>
<td>37</td>
<td>3</td>
<td>-</td>
<td></td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>101</td>
<td>166</td>
<td>0.608</td>
<td>8</td>
<td>15</td>
<td>0.533</td>
</tr>
<tr>
<td>Total</td>
<td>207,521</td>
<td>213,530</td>
<td>0.972</td>
<td>13,959</td>
<td>16,337</td>
<td>0.854</td>
</tr>
</tbody>
</table>
International data inconsistencies example 3: trade asymmetries

UK services exports to the US (and mirror statistics) (US$ bn)

US services exports to the UK (and mirror statistics) (US$ bn)
1. Collect national SUTs and IOs
 – At purchasers and basic prices -> if not: estimate
 – With breakdown between domestic and import use -> if not: estimate
2. Benchmark SUTs/IOs to most recent National Accounts totals
 – Ensuring a full time series -> if not: estimate
3. Harmonize national data to TiVA industry and product classifications
 – Moving to ISIC Rev 4, and CPA 2.1 in 2018
4. Develop balanced bilateral trade statistics (merchandise trade and trade in services), benchmarked to National Accounts totals
 – Trade asymmetries are explicitly and transparently reconciled

This is a coarse rendering of the steps involved, and reflects current/future processes rather past practices
5. Aligning balanced trade with national accounts and SUTs: exports
6. Aligning balanced trade with national accounts and SUTs: imports
7. Constructing a global supply table (bp) and use table (pp)
 • By breaking down exports and imports geographically with the SUT-aligned balanced trade figures
8. Converting the global use table to basic prices
 • Using standard conversion techniques also used for national tables
9. Converting the global SUT to the global industry*industry IO table
 • Using fixed product sales structure assumption
10. Final balancing
 • RAS > depending on preference for separate discrepancy column
BALANCED TRADE STATISTICS
Key characteristics and guiding principles

• **Transparency**: Each data point in the final balanced table can be traced back to both original sources and the exact calculations that were made.

• **Modularity**: Each step in the construction of a balanced trade database can be seen as an individual modules, which may be updated separately if new or better insights, methods or data become available.

• **Collaboration**: builds on work with statistical offices as well as with other international organizations, making insightful and visible the contributions of each to different components of the overall system

• **Long-term perspective**: The project has a long time-horizon. It is iterative and versioned, and is improved and extended incrementally in the years to come.

• **Catalyst for improved statistics**: Not ‘just’ an international analytical tool, but a process for increasing data consistency at the national/bilateral level of statistics
Currently disseminated as draft version for review prior to release

Covering 2007-2014, 190 countries and 5000+ 6-digit product codes

Next steps: official publication, additional years, additional modules
CIF-FOB dataset (cf ‘module B’)

- Coverage: 180 reporters and partners, 1258 HS 4-digit products, 1995-2014

- Next steps for 2017:
 - Update to 2015 (2016)
 - Include aggregates (2 digit HS, CPA 2 digit, reporters, partners)
 - Integrate more national data
 - Aggregated data for benchmarking received from: Germany, Italy, UK, France,...
OECD-WTO Balanced Trade in Services Statistics

| Data collection | • Data collection
	• Data cleaning & preparation
Data estimation	• Additional national data, backcasting, forecasting, interpolations, derivations, integration of EBOPS2010 data, gravity-model based estimates
Trade balancing	• Symmetry-index weighted average
Trade balancing	• Country-specific conversions of EBOPS to CPA using correspondence tables, SUT information and STEC

- Currently disseminated as draft version for review prior to release
- Covering 1995-2012, 190 countries/partners and all main EBOPS 2002 items
- Work on similar data in EBOPS 2010 from 2005 has started
BEYOND TIVA: FUTURE WORK
Beyond Trade in Value Added

• TiVA and its underpinning ICIO has already been used to shed new light on the relationships between trade, production and consumption. **But more is possible – and necessary!**

• Examples of policy questions:
 – Impact dimensions beyond economic growth:
 • What are the consequences for the **natural environment** (e.g. emissions and pollution related to GVCs)
 • What are the **social consequences** (employment: how many jobs are involved in GVCs, how to achieve inclusive globalisation)
 • And what about **taxes**?
 – Actors beyond industries:
 • What is the role of **SMEs** in Global Value Chains?
 • How do **MNEs** shape GVCs and the trade-investment nexus?
 • Or what about **processing firms**, or the **informal sector**?
The ICIO has already been used to address such policy questions…

Environmental footprint indicators:

Combining the ICIO with Green House Gas emissions data (by industry) to estimate consumption-based emissions
The ICIO has already been used to address such policy questions…

Employment:

Combining the ICIO with a jobs by industry vector to estimate jobs sustained by foreign final demand

Estimated employment sustained by foreign final demand, by skill level, 2001 and 2013, as share of business sector employment
For example:

• Analyse the role of FDI in production, consumption, GVCs and trade

• Address firm heterogeneity in GVCS: SMEs, trading firms, foreign owned enterprises, processing firms, ... (but also: informal sector)

• Better understand the role of investment and improving productivity estimates (e.g. via investment flow matrices)

• ...

Extended supply and use tables are the core ‘tool’ for integrating disparate statistics, providing important scope for improved and coherent accounts, nationally AND – via global (extended) Supply and Use tables - internationally
Architecture of Extended SUTs: three dimensions

- **Industries broken down by firm characteristics**, for example:
 - Ownership (foreign/domestic), firm size (SMEs/large); trading status (exporter/non-exporter); activities (processing/non-processing); informality (formal/informal);...

- **More detailed breakdowns of value added and supplementary rows on ‘Beyond GDP’ dimensions**, for example:
 - Property income flows (-trade-investment nexus and ‘stickiness’ of FDI);
 - Emissions, material flow matrices (environmental impact of GVCs, footprint indicators);
 - Employment, jobs, wages and business functions (inclusive globalisation);
 - Taxes on income, wealth (BEPS);
 - Capital flow matrices (improved productivity estimates)

- **Additional final demand breakdowns**, for example:
 - Separately identified re-exports;
 - Non-resident expenditures by product;
 - Gross flows related to global production arrangements
Comparison of SMEs’ contribution to exports in gross and value-added terms

Role of SMEs in international trade and GVCs greater than observed in gross export data alone

Value added exports of SMEs = Direct value added in SMEs’ exports + value added in inputs produced by SMEs and used by exporting firms
Example: Up to 20% of employment at non-trading sustained by foreign final demand

Share of employment that is embodied in exports, by firm type, 2013
Example: Domestic MNEs are a key channel to foreign markets for non-MNEs*

*Non-MNEs: domestic enterprises without foreign affiliates
OECD Expert Group on E-SUTs

• Develop the architecture of Extended Supply-Use Tables;
• Document the practical and innovative methods that can be used to construct such tables;
• Provide recommendations regarding best practices that:
 – Minimize heterogeneity, within given confidentiality constraints;
 – Shed light on beyond value-added dimensions;
 – Without imposing significant processing and compilation burdens on statistical institutes;
 – And with minimal impact on data collection, i.e. capitalizing on existing data sources and expertise such as TEC, FATS and SBS
Important compilation challenges remain…

• Absence of information on **product dimension** (purchases of intermediate inputs, by firm type)
• Integrating data sources with different **statistical units**
• Ensuring **representativeness** when integrating data sources with different sample size and grossing up factors
• Ideally, ESUTs should be developed **in tandem with SUTs** (or replacing SUTs)
• But when breaking down existing SUTs ex post:
 – Treatment of **trade though wholesalers**
 – **Level of detail** when using proportionality assumptions (> EGESUT proposes ~200 products)
 – Mimicking adjustments by SUT compilers in the microdata (e.g. in classifications)
• Nature of the **statistical system** and institutional arrangements (e.g. centralized systems, and systems that rely on administrative data, may have advantages)
• **Communication and dissemination** (possible policy messages, but also: confidentiality concerns)
• ...

Thank you

More information:
http://oe.cd/trade/valueadded
http://oe.cd/tiva-nowcast

Contact:
Fabienne.Fortanier@oecd.org
Christophe.Degain@wto.org