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The School of Remote Sensing and
Information Engineering at Wuhan University

Wuhan University:
* Location: Situated in Wuhan, Hubei Province, Central

China

* Reputation: Among the top-ranked universities in
China, with a strong emphasis on research and Wuhan
Innovation |

* Campus: Famous for its scenic campus, especially the A
iconic cherry blossoms and historic buildings so0km

The School of Remote Sensing and Information Engineering:

* Leadership: The discipline of remote sensing at Wuhan
University ranks first in various international rankings,
significantly influencing global remote sensing development.

* Prestige: Recognized as a top institution in China and
globally, known as the cradle of talent in surveying and
remote sensing




Personal Profile

Position:
* Full Professor
* Deputy Dean of School of Remote Sensing and Information Engineering, Wuhan University

Academic Contributions:
* Leading National Natural Science Foundation Major Program: Remote Sensing on-orbit
Real-time Diagnosis for the Earth’'s Surface Anomalies
* Multiple leading research achievements in the field of “Perception, Localization, and
Cooperative Control of Intelligent Unmanned Systems”
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Background

* Various earth’s surface anomalies caused by natural or human factors
(natural disasters, ecological damage, etc.) occur on a global scale and are
characterized by high frequency, high impact and heavy losses.

* Timely monitoring and early warning of earth surface anomalies has become
a major need to ensure healthy and stable social and economic development.




Background

* Remote Sensing Detection and Segmentation

* Large-scale, Non-contact, Dynamic, etc.

Before and After Satellite Images of the Earthquake-Affected Areas in Turkey



Background

Intelligent Real-time Extraction of Earth Surface Anomaly Information Based on
Massive Remote Sensing Data: A large amount of data is transmitted to the
ground for processing within a limited time window, leading to long response time.
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Background

* The current research mainly focus on post-doc analysis by
incorporating additional temporal and modal data.

 Data availability, data preprocessing, and data labeling pose
challenges for rapid response to earth’s surface anomalies.
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Weber, E., Kané, H. Building disaster damage assessment in satellite imagery with multi-temporal fusion. 2020.
Saha, S., Shahzad, M., Ebel, P., Zhu, X.X.: Supervised change detection using prechange optical-sar and postchange sar data. 2022



Motivation

Our solution is building a highly intelligent model capable of
addressing multi-tasks under constraint resource. Efficiently integrating
and intelligently interpreting multi-source remote sensing data under
limited conditions in space.
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Motivation

* Reduce detection time and save valuable time for response.

Anomaly
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Motivation

* We use graph neural networks as the core model, aiming to enable
the model to explicitly capture semantic relationships between
different geoentities and use them for inference.

* lrregular structure, Explicitly modeling relationships, Flexibility, etc.

Massive Samples 7 Semantic \(

o
o -
‘. I g & o
A o= <
A

\
Prior Knowledge

Simulated Process of Human Brain Interpret Comparison of Graph and Regular
Satellite Images Grid Image

12



Motivation

* After graph generation through node representation and topological
construction, various tasks can be carried out based on GNNs’ flexibility,
and it is widely applied in fields such as medicine and social networks.
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Motivation

Inspired by the Al-based synergistic approach of doctors in diagnosing
diseases at the cellular and tissue levels. We process satellite remote
sensing images into graph structures at different levels, including
geometric and semantic, facilitating earth surface anomaly detection.
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Motivation

Image-level detection: Simple, Fast, Robust, Low Granularity, Suitable for Large-scale
Applications

Pixel-level segmentation: High Accuracy, Fine Granularity, Detailed Information

Vector Data: Interpretability, Integration with other geospatial layers, Data Interoperability:
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Method: Graph Generation and Anomaly Detection

* A hierarchical geometry-to-semantic fusion GNN framework
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Method: Graph Generation and Anomaly Detection

* Graph Building—How to generate hierarchical graph?
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Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., SUsstrunk, S.: Slic superpixels compared to state-of-the-art
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Method: Graph Generation and Anomaly Detection

* Graph Building—How to generate hierarchical graph?
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Method: Graph Generation and Anomaly Detection

* Graph Building—How to generate hierarchical graph?
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Wang, Jingdong, et al. Deep high-resolution representation learning for visual recognition. [EEE TPAMI. 2020.
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Method: Graph Generation and Anomaly Detection

* Graph Building—How to generate hierarchical graph?

Low-level Geoentities Low-level Graph

Stage 1: Graph Generation

a0
ﬂ E O/O—Q
@) o | S/
Sk Syl SlplZ —
7 = p= o
U d>) \\O
O .
I
4 Assignment
v Maltrix
on
2
a,
g
=
o)
>
©)

£ —0
= = ©) /
g ~ingP
e
Input: Pretrained Semantic Feature =~ Segmentation High-level High-level Graph
. Single Satellite Image Segmentation Model ~ Map Result - Geoentities
» Y
> e >
1 LA
3 ] 1
S 2 S 2
1 m
—_ J
N (v,) = E Fi, v,€ Vi
m Jj=

21



Method: Graph Generation and Anomaly Detection

* Graph Building—How to generate hierarchical graph?

Stage 1: Graph Generation Low-level Geentitics Low-level Graph
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Method: Graph Generation and Anomaly Detection
* Anomaly Detection: How to learn from graph?

Stage 2: Earth Surface Anomalies Detection
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Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio. Graph attention networks. 2017.
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Method: Graph Generation and Anomaly Detection

* Anomaly Detection: How to learn from graph?

P

Stage 2: Earth Surface Anomalies Detection
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Method: Anomaly Segmentation and Representation

* Anomaly Segmentation: Main problem

Limited Annotation: Pixel-level labeling is time-consuming and non-trivial
Semantic Complexity: Intra-class diversity, inter-class similarity, scales, etc.
Domain Gap: Heterogeneity across spatial and temporal domain

Domain gap in remote sensing imagery

Intra-class diversity
(church)

Inter-class similarity
(basketball court
Vs
tennis court)

Multiple ground
objects
(commercial area)

Multiple scales
(airplane)

Semantic complexity in remote sensing imagery
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Method: Anomaly Segmentation and Representation

* Anomaly Segmentation: Weakly Supervised labels
Inexact label:
where the training data are given with only coarse-grained labels
Incomplete label:
where only a subset of training data is given with labels
Noisy label:
where the given labels are not always ground-truth

(b) box-level labels E> (@) cat (b) bus

(c) point labels (d) doodle labels (c) car (d) chair

Different labels in weakly supervised learnings
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Method: Anomaly Segmentation and Representation

* Anomaly Segmentation and Representation:

Based on image-level anomaly prediction results, attributions are
performed on each superpixel node, assessing impact levels and generating a
pixel-level attributed image for further analysis.
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Experiments

* ESAD (Earth Surface Anomaly Detection) Dataset
* 13058 samples, 11 classes, high spatial resolution

The first large-scale benchmark dataset for surface anomaly detection
in single images

Class Num X
Flood 647 Anomaly =
Landslide |59 i :

fire ahquakc flood  hurricane

.v'
]

bushfire landslid tao tsunami  volcano  wildfire

Debrisflow |48
Hurricane (1296
Wildfire 1201
Anomaly |Earthquake|14
Volcano 217
Tornado 254
Tsunami 107

Normal

Fire 1548
Bushfire 996
Normal 6671

Statistics of ESAD Dataset Examples of ESAD Dataset



Experiments

* Comparison with baselines

Quantitative result of comparison methods

Method

OA

Recall

AIT

Params

ResNet-50
MobileNetV3
ViT-B/32

91.05
88.40
93.71

90.42
88.08
93.40

16.63ms
14.98ms

16.67ms

25.61M
3.8M
88.21M

HGP-SL-Low
HGP-SL-High
HACT-Net

66.85
61.64
74.53

66.87
61.58
75.42

2.04ms
0.28ms
2.47ms

0.07TM
0.14M
0.79M

Our method

83.89

83.86

6.04ms

1.0IM
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Experiments

* Ablation Study

Ablation Study of Proposed Method

Method

OA

Recall

AIT

Params

GAT-Low
GAT-High
Concat-GAT
Our method

65.15
62.32
78.41
83.89

66.80
68.06
77.25
83.86

2.88ms
3.42ms
6.92ms
6.04ms

0.09M
0.21M
1.02M
1.01M
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Experiments

* Vectorized representation
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Vectorization

Input Superpixels Semantic
Segmentation
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Affected Build 1044
Damage Level 3
Affceted People | 1,500
OBJECTID 15
Property UD

Time 2023
AorN 1
Anomaly Type 6
Affected Build 785
Damage Level 4
Affceted People | 3,700

Vectorized Representation
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Conclusion and Future Work

* Better model performance

Improve overall model precision, recall, reduce the number of model parameters,
and improve inference efficiency

* Larger dataset

Construct a dataset with a larger sample size and more comprehensive types of
surface anomalies

* Satellite on-orbit experiment

Realize the framework for the deployment and operation of satellites in orbit
for the immediate detection and diagnosis of surface anomalies and the
downlinking of results
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